Plant Soluble Sugar Content Assay Kit
植物可溶性糖含量检测试剂盒
货号:AKPL008C
规格: 70T/50S
检测设备:可见分光光度计
可检测样本数:50 Samples
In Stock
BOXBIO提供专业的指标检测服务,如需检测服务,请点击右侧按钮
检测服务
Product Information
Plant Soluble Sugar Content Assay Kit
4℃ Wet Ice Transportation
  • 检测样本量:50 Samples
  • 主要检测设备及配套:可见分光光度计/1 mL玻璃比色皿(d=10 mm)
  • 预计测定时间:2 h (50 Samples)
  • 试剂储存条件:按照标签要求储存
  • 需自备试剂:
    浓硫酸(H2SO4,MW=98.078,CAS: 7664-93-9)
Detection Principle
糖类物质在硫酸作用下,脱水生成糠醛或羟甲基糠醛,进一步与蒽酮脱水缩合生成蓝绿色衍生物,产物在620 nm处具有特征吸收峰,通过吸光值变化即可定量检测植物可溶性糖的含量。
  • 检测方法: 蒽酮比色法
  • 检测波长: 620 nm
  • 信号响应: 递增型
Refreence Information
  • 标准物质: Glucose
  • 参考标准: y=6.9711x+0.0145(R2=0.9998)
  • 标准线性范围: 0.00625-0.2 mg/mL
  • 检测限: 0.001 mg/mL
  • 注:不同仪器及比色材质会对结果产生影响,以实际测定值为准。
Notices

①若测定吸光值超出标准吸光值线性范围:高于最高值建议将待测样本适当稀释后再进行测定,低于最低值建议适当增加样本量或缩小待测样本稀释倍数后再进行测定,计算时相应修改;

②浓硫酸具有强腐蚀性,操作时需特别注意:加入浓硫酸时,建议将枪头置于液面以下并缓慢加入,以防止液面沸腾烫伤及样本碳化,95℃水浴结束后需冷却至室温再打开离心管盖,以防液体飞溅;

注: 为保证结果准确且避免试剂损失,测定前请仔细阅读说明书(以实际收到说明书为准),确认试剂储存和准备是否充分,操作步骤是否清楚,且务必取2-3个预期差异交的样本进行预测定,过程中问题请您及时与工作人员联系。
Product Citation

[1] Dong Z, Liu Z, Xu Y, et al. Potential for the development of Taraxacum mongolicum aqueous extract as a phytogenic feed additive for poultry[J]. Frontiers in Immunology, 2024, 15: 1354040. (IF 7.3)

[2] Liu Z, Wu C, Li W, et al. OsCSLD4 confers salt–alkali tolerance by regulating gene expressions in photosynthesis and carbohydrate biosynthesis pathways, cell wall hemicellulose accumulation and physio-biochemical adaptability in rice[J]. Plant Stress, 2024: 100604. (IF 6.8)

[3] Liu Z, Hu Y, Du A, et al. Cell Wall Matrix Polysaccharides Contribute to Salt–Alkali Tolerance in Rice[J]. International Journal of Molecular Sciences, 2022, 23(23): 15019.(IF 6.208)

[4] Wen J, Chen C, Liu Q, et al. Environmental drivers of Leonurus japonicus habitat suitability: An ensemble model approach[J]. Industrial Crops and Products, 2025, 234: 121562. (IF 6.2)

[5] Liu N, Jacquemyn H, Liu Q, et al. Effects of a dark septate fungal endophyte on the growth and physiological response of seedlings to drought in an epiphytic orchid[J]. Frontiers in Microbiology, 2022, 13: 961172.(IF 6.064)

[6] Ren Y, Mu J, Zhao L, et al. Pulsed light treatment affects postharvest quality and regulatory mechanisms of sweet corn[J]. LWT, 2025: 117584. (IF 6.0)

[7] Wang B, Wang Y, Deng Y, et al. Synthesis of betanin by expression of the core betalain biosynthetic pathway in carrot (Daucus carota L.)[J]. Horticultural Plant Journal, 2023.(IF 5.7)

[8] Yang Z, Nan H, Lu X, et al. GhDMT7‐mediated DNA methylation dynamics enhance starch and sucrose metabolism pathways to confer salt tolerance in cotton[J]. The Plant Journal, 2025, 123(2): e70364. (IF 5.7)

[9] Li J, Liu X, Ahmad N, et al. CePP2C19 confers tolerance to drought by regulating the ABA sensitivity in Cyperus esculentus[J]. BMC Plant Biology, 2023, 23(1): 524.(IF 5.3)

[10] Jian P, Zhang H, Xi X, et al. Research on the Response of Arbuscular Mycorrhizae Fungi to Grape Growth Under High Temperature Stress[J]. International Journal of Molecular Sciences, 2025, 26(13): 6165. (IF 4.9)

[11] Wang D, Zhao X, Su T, et al. Exogenous Gibberellin Delays Postharvest Leaf Senescence in Pak Choi by Modulating Transcriptomic and Metabolomic Profiles[J]. Foods, 2025, 14(6): 981. (IF 4.7)

[12] Li Z, Li X, He F. Non-structural carbohydrates contributed to cold tolerance and regeneration of Medicago sativa L[J]. Planta, 2023, 257(6): 116.(IF 4.3)

[13] Yin M, Zhang J, Du L, et al. Effects of irrigation and organic fertilizer on pumpkin yield, quality, and water-fertilizer use efficiency in arid northwest China[J]. Frontiers in Plant Science, 2025, 16: 1517761. (IF 4.1)

[14] Yang J, Chen R, Liu W, et al. Genome-wide identification, phylogenetic investigation and abiotic stress responses analysis of the PP2C gene family in litchi (Litchi chinensis Sonn.)[J]. Frontiers in Plant Science, 2025, 16: 1547526. (IF 4.1)

[15] Sun X, Zhu C, Li B, et al. Combining Physiology and Transcriptome to Reveal Mechanisms of Hosta ‘Golden Cadet’in Response to Alkali Stress[J]. Plants, 2025, 14(4): 593. (IF 4.0)

[16] Li Z, Li X, He F. Drip Irrigation Depth Alters Root Morphology and Architecture and Cold Resistance of Alfalfa[J]. Agronomy, 2022, 12(9): 2192.(IF 3.949)

[17] Yang J, Zhou Z, Qi W, et al. Phenotypic plasticity and integration synergistically enhance plant adaptability to flooding and nitrogen stresses[J]. Plant and Soil, 2025: 1-22. (IF 3.9)

[18] Chen G, Zhang D, Chen F, et al. Uncovering the molecular mechanisms of Acer fabri in adjusting to low-temperature stress through integrated physiological and transcriptomic analysis[J]. Scientific Reports, 2025, 15(1): 3036. (IF 3.8)

[19] Liu T, Fu Y, Li G, et al. Transcriptomic and Physiological Responses of Qingye Ramie to Drought Stress[J]. Agronomy, 2024, 14(2): 301.(IF 3.7)

[20] He M, Yang Z, Yang L, et al. Integrated Physiological and Transcriptomic Analysis Reveals Transcription Factors Are Crucial for Melatonin‐Mediated Drought Tolerance in E. ulmoides[J]. Physiologia Plantarum, 2025, 177(4): e70382. (IF 3.6)

[21] Wang F H, Zhang C, Wang C L, et al. Estimating the role of maize Y-EPSPS gene in glyphosate resistance in Arabidopsis transgenic lines[J]. Plant Growth Regulation, 2024: 1-13. (IF 3.5)

[22] Hou S, Liu Z, Li Y, et al. Exogenous salicylic acid enhanced resistance of Foxtail Millet (Setaria italica) to Sclerospora graminicola[J]. Plant Growth Regulation, 2023, 99(1): 35-44.(IF 3.242)

[23] Cheng H, Chang S, Shi X, et al. Molecular Mechanisms of the Effects of Sodium Selenite on the Growth, Nutritional Quality, and Species of Organic Selenium in Dandelions[J]. Horticulturae, 2024, 10(3): 209. (IF 3.1)

[24] Song Y, Li R, Zhou L, et al. Morphological, Physiological and Biochemical Changes in the Grape Variety “Hotan Red” Caused by the Occurrence of Stress Under the Influence of Saline–Alkaline Growing Conditions[J]. Horticulturae, 2025, 11(1): 69. (IF 3.1)

[25] Xiao H, Deng W, Ahmad B, et al. Cucurbita ficifolia Rootstock Enhances Resistance to Low-Temperature Stress in Cucumber[J]. Horticulturae, 2025, 11(3): 242. (IF 3.1)

Related Products
Publication Reward
BOXBIO 助研基金申请
JOIN
*发表文章中注明Boxbio、北京盒子生工科技有限公司(Beijing Boxbio Science & Technology Co.,Ltd.) 即可申请。
Calculator
The Dilution Calculator Equation
Concentration (start)xVolume (start)= Concentration (final)× Volume (final)
This equation is commonly abbreviated as: C1V1 = C2V2
  • x
    =
    x
Make Science Easy
Personal Assistant
BoxLab Provides Butler service
Professional Technical support
Product Innovation Protocol
Quality Control
Box QC&AS Provides
Strict Quality Management Process
Considerate After Sales service
Professional Service
Box Customer Service Provides
Pre-sales Service
Product ordering and cooperation
北京盒子生工科技有限公司旗下产品
版权所有:Copyright(C)2020 北京盒子生工科技有限公司