①若A测定或∆A测定超出标准线性吸光值范围:高于最高值建议将待测样本使用蒸馏水适当稀释后再进行测定;低于最低值建议制备更高浓度样本后再进行测定,计算时相应修改;
②浓硫酸具有强腐蚀性,请做好防护措施并谨慎操作;
③待测样本稀释倍数可参照公式计算
最大稀释倍数(DMax)=74"×W×A"
最小稀释倍数(DMin)=3"×W×A"
注释:W:样品质量,g;A:预估淀粉含量,mg/g;例:预估淀粉含量为400 mg/g(40%),称取0.05 g样本进行淀粉提取,DMin=60,DMax=1480,即待测样本稀释倍数可选择60-1400倍。
[1] Zhao Y, Yu S, Zhao H, et al. Integrated multi-omics analysis reveals the positive leverage of citrus flavonoids on hindgut microbiota and host homeostasis by modulating sphingolipid metabolism in mid-lactation dairy cows consuming a high-starch diet[J]. Microbiome, 2023, 11(1): 236.(IF 15.5)
[2] Tian X, Hu Y, Gao Y, et al. Effects of Aspergillus flavus infection on multi-scale structures and physicochemical properties of maize starch during storage[J]. Carbohydrate Polymers, 2024: 122322. (IF 11.2)
[3] Zhao Y, Yu S, Tan J, et al. Bioconversion of citrus waste by long-term DMSO-cryopreserved rumen fluid to volatile fatty acids and biogas is feasible: A microbiome perspective[J]. Journal of Environmental Management, 2024, 351: 119693.(IF 8.7)
[4] He Z, Zeng J, Hu J, et al. Effects of cooking methods on the physical properties and in vitro digestibility of starch isolated from Chinese yam[J]. International Journal of Biological Macromolecules, 2024: 131597. (IF 8.2)
[5] Chai J, Li J, Liu Q, et al. Differential changes in respiratory metabolism and energy status in the outer pericarp and core tissues affect the ripening of ‘Xuxiang’kiwifruit[J]. Postharvest Biology and Technology, 2024, 212: 112876. (IF 7.0)
[6] Wu S, Zhang Y, Chen B, et al. Combined treatment of rice bran by solid-state fermentation and extrusion: Effect of processing sequence and microbial strains[J]. Food Chemistry: X, 2024: 101549. (IF 6.5)
[7] Yu P, Pan X, Chen M, et al. Ultrasound-assisted enzymatic extraction of soluble dietary Fiber from Hericium erinaceus and its in vitro lipid-lowering effect[J]. Food Chemistry: X, 2024, 23: 101657. (IF 6.5)
[8] Zhang Y, Dai T, Liu Y, et al. Effect of exogenous glycine betaine on the germination of tomato seeds under cold stress[J]. International Journal of Molecular Sciences, 2022, 23(18): 10474.(IF 6.208)
[9] Yu J, Yang J, Dai S, et al. PpAmy1 Plays a Role in Fruit-Cracking by Regulating Mesocarp Starch Hydrolysis of Nectarines[J]. Journal of Agricultural and Food Chemistry, 2024.(IF 6.1)
[10] Han L, Li R, Jin X, et al. Metabolomic analysis, extraction, purification and stability of the anthocyanins from colored potatoes[J]. Food Chemistry: X, 2024: 101423. (IF 6.1)
[11] Peng D, Tang D, Zhong C, et al. Interactions between Fuzi (Aconiti Lateralis Radix Preparata) total alkaloids and Fuzi starch: Structural, physicochemical, and rheological properties[J]. LWT, 2023, 182: 114879.(IF 6)
[12] Hou S, Han J, Men Y, et al. Analysis of genotype-by-environment effects on starch content in 281 Tartary buckwheat varieties and evaluation of the physicochemical properties of two elite varieties[J]. LWT, 2024: 115866. (IF 6.0)
[13] Mao J, Gao Z, Lin M, et al. Targeted multi-platform metabolome analysis and enzyme activity analysis of kiwifruit during postharvest ripening[J]. Frontiers in Plant Science, 2023, 14: 1120166.(IF 5.6)
[14] Dong L, Wang F, Chen L, et al. Metabolomic analysis reveals the responses of docosahexaenoic-acid-producing Schizochytrium under hyposalinity conditions[J]. Algal Research, 2023, 70: 102987.(IF 5.1)
[15] Wang W, An C, Yao Y, et al. De novo biosynthesis and gram-level production of m-cresol in Aspergillus nidulans[J]. Applied Microbiology and Biotechnology, 2021, 105: 6333-6343.(IF 4.813)
[16] Yu Z P, An C, Yao Y, et al. A combined strategy for the overproduction of complex ergot alkaloid agroclavine[J]. Synthetic and Systems Biotechnology, 2022, 7(4): 1126-1132.(IF 4.692)
[17] Wei F, Ma N, Haseeb H A, et al. Insights into structural and physicochemical properties of maize starch after Fusarium verticillioides infection[J]. Journal of Food Composition and Analysis, 2022, 114: 104819.(IF 4.52)
[18] Wan X, Yao G, Wang K, et al. Transcriptomic Analysis of the Response of the Toxic Dinoflagellate Prorocentrum lima to Phosphorous Limitation[J]. Microorganisms, 2023, 11(9): 2216.(IF 4.5)
[19] Li Z, Li X, He F. Non-structural carbohydrates contributed to cold tolerance and regeneration of Medicago sativa L[J]. Planta, 2023, 257(6): 116.(IF 4.3)
[20] Li X, Shen D, Mao J, et al. Increased weight loss and internal air space, degraded starch and pectin combined to cause pulp mealiness in ‘Oregon Spur Ⅱ’apples during ambient storage[J]. Scientia Horticulturae, 2024, 324: 112629.(IF 4.3)
[21] Li X, Li Y, Xi R, et al. GWAS identifies candidate genes affecting water absorption in foxtail millet seeds[J]. Plant Growth Regulation, 2023: 1-9.(IF 4.2)
[22] Ren F, Liu M, Liu Y, et al. Core microbes closely related with the nutrients and flavor of sweet fermented oats (whole grain food) from China[J]. World Journal of Microbiology and Biotechnology, 2023, 39(9): 236.(IF 4.1)
[23] Zhang G, Hua D, Xu J, et al. Pulsed light treatment enhances starch hydrolysis and improves starch physicochemical properties of germinated brown rice[J]. Journal of the Science of Food and Agriculture, 2023.(IF 4.1)
[24] Xu F, Sun D, Wang Z, et al. Highly Efficient Production of Cellulosic Ethanol from Poplar Using an Optimal C6/C5 Co-Fermentation Strain of Saccharomyces cerevisiae[J]. Microorganisms, 2024, 12(6): 1174. (IF 4.1)
[25] Li Z, Li X, He F. Drip Irrigation Depth Alters Root Morphology and Architecture and Cold Resistance of Alfalfa[J]. Agronomy, 2022, 12(9): 2192.(IF 3.949)
[26] Ren F, Liu M, Tan B. Bacterial diversity and metabolites: Exploring correlations with preservative properties in soybean pastes[J]. Journal of Food Science, 2024. (IF 3.9)
[27] Li M, Xu F, Zhao Y, et al. High-Efficient Production of Cellulosic Ethanol from Corn Fiber Based on the Suitable C5/C6 Co-Fermentation Saccharomyces cerevisiae Strain[J]. Fermentation, 2023, 9(8): 743.(IF 3.7)